1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
| """ Copyright (C) 2018-2019 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function, division
import logging import os import sys from argparse import ArgumentParser, SUPPRESS from math import exp as exp from time import time import numpy as np
import cv2 from openvino.inference_engine import IENetwork, IECore
logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout) log = logging.getLogger()
def build_argparser(): parser = ArgumentParser(add_help=False) args = parser.add_argument_group('Options') args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.') args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.", required=True, type=str) args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with " "camera)", required=True, type=str) args.add_argument("-l", "--cpu_extension", help="Optional. Required for CPU custom layers. Absolute path to a shared library with " "the kernels implementations.", type=str, default=None) args.add_argument("-d", "--device", help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is" " acceptable. The sample will look for a suitable plugin for device specified. " "Default value is CPU", default="CPU", type=str) args.add_argument("--labels", help="Optional. Labels mapping file", default=None, type=str) args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering", default=0.5, type=float) args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping " "detections filtering", default=0.4, type=float) args.add_argument("-ni", "--number_iter", help="Optional. Number of inference iterations", default=1, type=int) args.add_argument("-pc", "--perf_counts", help="Optional. Report performance counters", default=False, action="store_true") args.add_argument("-r", "--raw_output_message", help="Optional. Output inference results raw values showing", default=False, action="store_true") args.add_argument("--no_show", help="Optional. Don't show output", action='store_true') return parser
class YoloParams: def __init__(self, side): self.num = 3 self.coords = 4 self.classes = 80 self.side = side self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0, 198.0, 373.0, 326.0]
def log_params(self): params_to_print = {'classes': self.classes, 'num': self.num, 'coords': self.coords, 'anchors': self.anchors} [log.info(" {:8}: {}".format(param_name, param)) for param_name, param in params_to_print.items()]
def letterbox(img, size=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): shape = img.shape[:2] w, h = size
r = min(h / shape[0], w / shape[1]) if not scaleup: r = min(r, 1.0)
ratio = r, r new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = w - new_unpad[0], h - new_unpad[1] if auto: dw, dh = np.mod(dw, 64), np.mod(dh, 64) elif scaleFill: dw, dh = 0.0, 0.0 new_unpad = (w, h) ratio = w / shape[1], h / shape[0]
dw /= 2 dh /= 2
if shape[::-1] != new_unpad: img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
top2, bottom2, left2, right2 = 0, 0, 0, 0 if img.shape[0] != h: top2 = (h - img.shape[0])//2 bottom2 = top2 img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color) elif img.shape[1] != w: left2 = (w - img.shape[1])//2 right2 = left2 img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color) return img
def scale_bbox(x, y, height, width, class_id, confidence, im_h, im_w, resized_im_h=640, resized_im_w=640): gain = min(resized_im_w / im_w, resized_im_h / im_h) pad = (resized_im_w - im_w * gain) / 2, (resized_im_h - im_h * gain) / 2 x = int((x - pad[0])/gain) y = int((y - pad[1])/gain)
w = int(width/gain) h = int(height/gain) xmin = max(0, int(x - w / 2)) ymin = max(0, int(y - h / 2)) xmax = min(im_w, int(xmin + w)) ymax = min(im_h, int(ymin + h)) return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id.item(), confidence=confidence.item())
def entry_index(side, coord, classes, location, entry): side_power_2 = side ** 2 n = location // side_power_2 loc = location % side_power_2 return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)
def parse_yolo_region(blob, resized_image_shape, original_im_shape, params, threshold): out_blob_n, out_blob_c, out_blob_h, out_blob_w = blob.shape predictions = 1.0/(1.0+np.exp(-blob)) assert out_blob_w == out_blob_h, "Invalid size of output blob. It sould be in NCHW layout and height should " \ "be equal to width. Current height = {}, current width = {}" \ "".format(out_blob_h, out_blob_w)
orig_im_h, orig_im_w = original_im_shape resized_image_h, resized_image_w = resized_image_shape objects = list() side_square = params.side * params.side
bbox_size = int(out_blob_c/params.num)
for row, col, n in np.ndindex(params.side, params.side, params.num): bbox = predictions[0, n*bbox_size:(n+1)*bbox_size, row, col] x, y, width, height, object_probability = bbox[:5] class_probabilities = bbox[5:] if object_probability < threshold: continue x = (2*x - 0.5 + col)*(resized_image_w/out_blob_w) y = (2*y - 0.5 + row)*(resized_image_h/out_blob_h) if int(resized_image_w/out_blob_w) == 8 & int(resized_image_h/out_blob_h) == 8: idx = 0 elif int(resized_image_w/out_blob_w) == 16 & int(resized_image_h/out_blob_h) == 16: idx = 1 elif int(resized_image_w/out_blob_w) == 32 & int(resized_image_h/out_blob_h) == 32: idx = 2
width = (2*width)**2* params.anchors[idx * 6 + 2 * n] height = (2*height)**2 * params.anchors[idx * 6 + 2 * n + 1] class_id = np.argmax(class_probabilities) confidence = object_probability objects.append(scale_bbox(x=x, y=y, height=height, width=width, class_id=class_id, confidence=confidence, im_h=orig_im_h, im_w=orig_im_w, resized_im_h=resized_image_h, resized_im_w=resized_image_w)) return objects
def intersection_over_union(box_1, box_2): width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin']) height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin']) if width_of_overlap_area < 0 or height_of_overlap_area < 0: area_of_overlap = 0 else: area_of_overlap = width_of_overlap_area * height_of_overlap_area box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin']) box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin']) area_of_union = box_1_area + box_2_area - area_of_overlap if area_of_union == 0: return 0 return area_of_overlap / area_of_union
def main(): args = build_argparser().parse_args()
log.info("Creating Inference Engine...") ie = IECore() if args.cpu_extension and 'CPU' in args.device: ie.add_extension(args.cpu_extension, "CPU")
model = args.model log.info(f"Loading network:\n\t{model}") net = ie.read_network(model=model)
assert len(net.input_info.keys()) == 1, "Sample supports only YOLO V3 based single input topologies"
log.info("Preparing inputs") input_blob = next(iter(net.input_info))
net.batch_size = 1
n, c, h, w = net.input_info[input_blob].input_data.shape
if args.labels: with open(args.labels, 'r') as f: labels_map = [x.strip() for x in f] else: labels_map = None
input_stream = 0 if args.input == "cam" else args.input
is_async_mode = True cap = cv2.VideoCapture(input_stream) number_input_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) number_input_frames = 1 if number_input_frames != -1 and number_input_frames < 0 else number_input_frames
wait_key_code = 1
if number_input_frames != 1: ret, frame = cap.read() else: is_async_mode = False wait_key_code = 0
log.info("Loading model to the plugin") exec_net = ie.load_network(network=net, num_requests=2, device_name=args.device)
cur_request_id = 0 next_request_id = 1 render_time = 0 parsing_time = 0
log.info("Starting inference...") print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key") print("To switch between sync/async modes, press TAB key in the output window") while cap.isOpened(): if is_async_mode: ret, next_frame = cap.read() else: ret, frame = cap.read()
if not ret: break
if is_async_mode: request_id = next_request_id in_frame = letterbox(frame, (w, h)) else: request_id = cur_request_id in_frame = letterbox(frame, (w, h))
in_frame0 = in_frame in_frame = in_frame.transpose((2, 0, 1)) in_frame = in_frame.reshape((n, c, h, w))
start_time = time() exec_net.start_async(request_id=request_id, inputs={input_blob: in_frame}) det_time = time() - start_time
objects = list() if exec_net.requests[cur_request_id].wait(-1) == 0: output = exec_net.requests[cur_request_id].output_blobs start_time = time() for layer_name, out_blob in output.items(): layer_params = YoloParams(side=out_blob.buffer.shape[2]) log.info("Layer {} parameters: ".format(layer_name)) layer_params.log_params() objects += parse_yolo_region(out_blob.buffer, in_frame.shape[2:], frame.shape[:-1], layer_params, args.prob_threshold) parsing_time = time() - start_time
objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True) for i in range(len(objects)): if objects[i]['confidence'] == 0: continue for j in range(i + 1, len(objects)): if intersection_over_union(objects[i], objects[j]) > args.iou_threshold: objects[j]['confidence'] = 0
objects = [obj for obj in objects if obj['confidence'] >= args.prob_threshold]
if len(objects) and args.raw_output_message: log.info("\nDetected boxes for batch {}:".format(1)) log.info(" Class ID | Confidence | XMIN | YMIN | XMAX | YMAX | COLOR ")
origin_im_size = frame.shape[:-1] print(origin_im_size) for obj in objects: if obj['xmax'] > origin_im_size[1] or obj['ymax'] > origin_im_size[0] or obj['xmin'] < 0 or obj['ymin'] < 0: continue color = (int(min(obj['class_id'] * 12.5, 255)), min(obj['class_id'] * 7, 255), min(obj['class_id'] * 5, 255)) det_label = labels_map[obj['class_id']] if labels_map and len(labels_map) >= obj['class_id'] else \ str(obj['class_id'])
if args.raw_output_message: log.info( "{:^9} | {:10f} | {:4} | {:4} | {:4} | {:4} | {} ".format(det_label, obj['confidence'], obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], color))
cv2.rectangle(frame, (obj['xmin'], obj['ymin']), (obj['xmax'], obj['ymax']), color, 2) cv2.putText(frame, "#" + det_label + ' ' + str(round(obj['confidence'] * 100, 1)) + ' %', (obj['xmin'], obj['ymin'] - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)
inf_time_message = "Inference time: N\A for async mode" if is_async_mode else \ "Inference time: {:.3f} ms".format(det_time * 1e3) render_time_message = "OpenCV rendering time: {:.3f} ms".format(render_time * 1e3) async_mode_message = "Async mode is on. Processing request {}".format(cur_request_id) if is_async_mode else \ "Async mode is off. Processing request {}".format(cur_request_id) parsing_message = "YOLO parsing time is {:.3f} ms".format(parsing_time * 1e3)
cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1) cv2.putText(frame, render_time_message, (15, 45), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1) cv2.putText(frame, async_mode_message, (10, int(origin_im_size[0] - 20)), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1) cv2.putText(frame, parsing_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1)
start_time = time() if not args.no_show: cv2.imshow("DetectionResults", frame) render_time = time() - start_time
if is_async_mode: cur_request_id, next_request_id = next_request_id, cur_request_id frame = next_frame
if not args.no_show: key = cv2.waitKey(wait_key_code) if key == 27: break if key == 9: exec_net.requests[cur_request_id].wait() is_async_mode = not is_async_mode log.info("Switched to {} mode".format("async" if is_async_mode else "sync"))
cv2.destroyAllWindows()
if __name__ == '__main__': sys.exit(main() or 0)
|